Do I need an Engineer on my Risk Consistency Team?

Session Theme Aiming for Improvements of Prospect Evaluation Methods

Risk Coordinators Workshop 21 – 22 November 2016

> Mark Schneider Rose & Associates

Before we get started....

Reminder of why we characterize uncertainty with distributions

Case 1: Shallow & Safe enough for a child to cross?

Case 1: Flaw of Averages Without Ranges, cannot assess the real danger

Case 2: Where to go for a Warm Summer Vacation?

Average Temperature

<u>Option 1</u> 25°C (77°F) <u>Option 2</u> 25°C (77°F)

Standard Deviation

Option 1 1.0°C (1.8°F) <u>Option 2</u> 9.0°C (16.2°F)

Case 2: Flaw of Averages Without Ranges, not prepared for all situations

Is there room on my Risk Team for an Engineer?

• Most Risk Teams don't have an engineer

- Why should it be considered?

- Barriers to Overcome to have an engineer
 - Management Barriers
 - Technical Staff Barriers
- Examples of Engineering Experience improving the process
- Benefits Achieved with Engineer on the Team
 - Enough to Justify an Engineer on every Risk Team?

Why consider an Engineer for the Risk Team?

- Reality Check Hydrocarbon Recovery Yield
 - Smallest Impact on Resource Size not same as Not Important
- Group Wisdom
- Multiple Working Hypothesis
- Providing a New Perspective
- Diverse & Complimentary Skill Sets

But do these reasons add value to the process?

Risk Team has Corporate Responsibility

- Systematic, unbiased resource estimates
- Consistent assessment of chance of success
 - > Leads to better portfolio decision making
 - > Leads to more predictable portfolio results

Objective is Not to Make Geologic Discoveries, but rather to Have Profitable Developments

- Prospect Evaluation is not simply OOIP and P_a
- > Development Plan, Recovery Efficiency & MCFS Impact
- Engineering & Economics are Important Inputs to the process of building an optimized exploration portfolio

Risk Teams benefit from Diverse & Complimentary Skill Sets

Geosciences

hydrocarbon generation, migration pathways, seal capacities, seismic attributes, DHI analysis, trap interpretation, fault analysis, etc.

Engineering

recovery efficiencies of primary & secondary products oil & gas FVF, porosities, saturations, permeability impact of MCFS on exploration decision making development scenarios impacting economics, etc.

This is how a Fault looks in an Outcrop How do we see a Fault that is buried? **Depends on your perspective !!**

Risk Teams Geoscience Members ensure Consistency But also Provide Another Level of Quality Control

Quick Look Techniques for Prospect Evaluation

> Richard E. Bischke Joseph L. Brewton

Figure 3-13a Structural interpretation of Horizons P5 and P7 based on available seismic data. A-A' is an illustration aid cross section across the structure. (Daniel J. Tearpock/Richard E. Bischke, APPLIED SUBSURFACE GEOLOGICAL MAPPING, 1991, p. 151. Reprinted by permission of Prentice-Hall, Englewood Cliffs, New Jersey.)

Figure 3-13b This cross section shows that the lower P7 Horizon crosses the upper P5 Horizon at Location C and is mapped shallower than P5 from this position updip to the salt. This is an impossible interpretation. (Tearpock/Bischke, APPLIED SUBSURFACE GEOLOGICAL MAPPING, 1991, P. 151. Reprinted by permission of Prentice-Hail, Inc.)

Numerically Insightful Individuals, often Engineers, can provide Quality Control on all sorts of information

		OI	Gas	Water
	Well	(BOPD)	(MCFD)	(BWPD)
	1	841	1,032	1,615
	2	701	1,250	1,160
Reported	3	925	843	1,053
Fluid Rates	4	684	1,346	1,379
for 20 Wells	5	731	1,391	1,244
	6	607	1,064	1,139
with Average	7	946	1,072	1,365
	8	820	1,271	1,177
Is the Average Oil Pate:	9	888	1,692	1,193
Is the Average Of Nate.	10	819	1,486	1,663
About Right?	11	632	1,364	1,623
Too High?	12	952	1,019	1,347
Too Low?	13	874	1,020	1,161
How should I know?	14	958	1,520	1,057
	15	892	1,152	1,520
Too High	16	772	1,263	1,458
Computer Age hee	17	892	1,236	1,337
Computer Age has	18	602	1,427	1,396
led many people to	19	921	1,268	1,253
turning off their brain	20	743	1,241	995
	Average	1,002	1,248	1,307

Barriers to Overcome

Barriers to Overcome to add an Engineer on Risk Team

- Exploration Management
 - "I don't want an engineer on the team because they are too pessimistic and I won't get all my prospects drilled"
- Development Management
 - "I'm short-handed and I need my engineers working on producing assets, not wells that are going to be dry holes"
- Risk Team Members & Exploration Staff
 Want to Focus on Most Important Aspects of NRV and Pg
- Engineers don't feel like it is good career move
- Keep Team Smaller to Reduce Expenses

But do any of these reasons provide valid justification to keep an engineer off the Risk Team?

Examples of Engineering **Experience** improving **Prospect Evaluations**

Engineers also need to think spatially about recovery efficiency Impact of lithology on Hydrocarbon Recovery Yield (BO/AcFt)

Log Probability Chart

Toolbox v4-3-110 (Office 2007-2010) May 2012

ANALOG DATA SAMPLES (not curve fit statistics)						
Count	Smallest	Average	Largest			
Group 1	Ana	log Data Values				
\diamond		All				
n = 8	70.00	190.63	350.00			
Group 2		-				
\bigcirc		-				
-	-	-	-			
Group 3		-				
		-				
-	-	-	-			
Group 4		-				
		-				
-	-	-	-			
Group 5		-				
Ŧ		-				
-	-	-	-			
	CURVE FITS DIS	SPLAYED				
Unconstrained Log	normal		ACTIVE			
Lognormal but Mate	ches Data Mean		OFF			
Lognormal Bounde	d		OFF			
Lognormal w/1 Spe	ecified Point		OFF			
Lognormal User-D	efined		OFF			
Beta Curve Fit			OFF			
Normal Curve			OFF			
Polynomial			OFF			
Piecewise Linear			OFF			
Discrete, Unweight	ed	·	OFF			
NUMERICAL LIMITS & BETA SCALING						
Minimum	(DFF				
Maximum	ximum OFF					
OTHER						

Plotting Position Calculation Method: MIDPOINT

ANALOG DATA SA	MPLES (not cu	urve fit statistic	s)
Count	Smallest	Average	Largest
Group 1		-	
\diamond		-	
-	-	-	-
Group 2	Ar	nalog Data Valu	es
\bigcirc		Limestone	
n = 4	70.00	107.50	145.00
Group 3	Ar	nalog Data Valu	es
		Dolomite	
n = 4	215.00	273.75	350.00
Group 4		-	
		-	
-	-	-	-
Group 5		-	
+		-	
-	-	-	-
	CURVE FITS D	DISPLAYED	
Unconstrained Log	normal		- ACTIVE
Lognormal but Mat	ches Data Mea	an —————	OFF
Lognormal Bounde	ed		OFF
Lognormal w/1 Spe	ecified Point		OFF
Lognormal User-D	efined		OFF
Beta Curve Fit			OFF
Normal Curve			OFF
Polynomial			OFF
Piecewise Linear			OFF
Discrete, Unweight	ted		OFF
NUME	RICAL LIMITS	& BETA SCALIN	NG
Minimum		OFF	
Maximum		OFF	
	ОТН	ED	

Log Probability Chart

Toolbox v4-3-110 (Office 2007-2010) May 2012

Plotting Position Calculation Method: MIDPOINT

Plotting Position Calculation Method: MIDPOINT

Maybe not, note the P1 of combined distribution is larger when the tight limestone is included in distribution. Is it reasonable to increase the P1 Dolomite value by adding poor limestone values to distribution? No.

Combining Limestone & Dolomite Distributions

Scenario Approach: Sample each distribution probability weighted by expectation of facies type

Estimating Exploration EUR

Recovery Efficiency often the largest uncertainty of the Hydrocarbon Recovery Yield variables

Oil Recovery Efficiency					
Drive Mechanism	Primary Recovery (P90 – P10)*	Secondary Recovery (P90 – P10)*			
Depletion (solution gas drive)	15% - 30%	15% - 40%			
Gas Cap	15% - 40%	15% - 45%			
Water Drive	20% - 45%	20% - 50%			
HPHT reservoirs – Oil expansion above P_b	1% - 5%	5% - 12+% with partial natural aquifer support			
*Assumptions - light gravit Mid (15° – 25°) Sub Heavy (<15°) Sub seer Questionable reservoir co	y oil tract 5% - 10% tract 10% - 15% (in 8 n foamy oils with reco ontinuity Subtra	3º to 12º API oil, we have veries of 6% to 12%) act 5% - 10% After Cronquist, 2			

Gas Recovery Efficiency

Drive Mechanism	Conventional Reservoirs (P90 – P10)	Unconventional Reservoirs (P90 – P10)
Depletion (gas expansion drive)	60% - 80% *	5% - 60%
Water Drive (Medium)	50% - 70% *	
Water Drive (Strong)	40% - 60% *	
Unconventional Gas		Dependent on spacing and stimulated rock volume

*Assumes good reservoir quality (continuity)

For questionable reservoir continuity subtract 10% - 30%+ for conventional reservoir – much higher for unconventional reservoirs

After Cronquist, 2001

Guidelines are just a reference; Not to be used for specific prospects

Oil RE can vary by factor of 2 to 3 Gas RE can vary by factor up to 2

Recovery Efficiency is function of:

- Reservoir Quality
- Reservoir Continuity
- Reservoir Compartmentalization
- Aquifer Size & Quality
- Fluid Properties
- Development Plan
- Product Prices (impact on Eco Limit)

Recovery Efficiency – Impact of Aquifer Size

Geoscientist will focus on the NRV above the Spill Point for a structural prospect

Recovery Efficiency – Impact of Aquifer Size

Geoscientist will focus on the NRV above the Spill Point for a structural prospect

Aquifer Impact can be BIG

Engineer will ask about lateral continuity of reservoir beyond spill point to estimate size of potential aquifer and impact it will have on recovery efficiency

Recovery Efficiency – Impact of Aquifer Size

Geoscientist will focus on the NRV above the Spill Point for a structural prospect

Aquifer Impact can be SMALL

Engineer will ask about lateral continuity of reservoir beyond spill point to estimate size of potential aquifer and impact it will have on recovery efficiency

Reservoir Volume Dynamically Connected by Wells Its not going to produce if you don't have a well in it

Fault Compartmentalization

Lateral Discontinuous

Reservoir geometry will have significant impact on recovery efficiency and development strategy required to maximize value

Stay On Guard for Oil FVF-GOR Disconnects

GOR (scf/bbl)

Stay On Guard for Oil FVF-GOR Disconnects

GOR (scf/bbl)

Remembering what controls GEF (= 1/FVF_{gas})

<u>Reservoir</u>	Gas (Reservoir BCF)	<u>GEF (SCF/RCF)</u>	Gas (Standard BCF)				
Shallow	0.250	320	80				
with Correct GEF		80	20				
With Wrong GEF, EUR overestimated by Factor of 4							
Gas Expansion Factor (GEF = Eg = 1/Bg	a)						

Field/Prospect	Deep Gas Prospect with Shallow Second	ondary Zone	Reservoir:		Toolbox v4-3-110 (Office 2	2007-2010) May 2012
Imperial Units	© SI / Metric Units	Deep Zone	Shallow Zone	Required Input Optional Input	Calculated Value Units Selection	
	Water Depth (ft) (if Offshore)	12 000	2 200	Optional Input Ov	erridden	
Bottom Hol Temperature	Pirect Input Direct Input BHT (Calculated) °F Surface/Mud Line Temperature (°F) Temp Gradient (°F/100ft)	270 30 2.00	74 30 2.00	This tool calculates Bg (scf / hydrocarbon gases based on conditions and gas c GEF = Eg = 1/Bg = [Tsc *	rcf or stm ³ / rm ³) for estimated reservoir omposition. P] / [z * T * Psc]	
Initial Bottom I Pressure (ps N	Iole Direct Input BHPi (Calculated) psia Surface Pressure (psia) Water Pressure Gradient (psi/ft) if Offshore Overburden Pressure Gradient (psi/ft)	8,415 14.70 0.45 0.70	1,005 14.70 0.45 0.45	Standard Conc Standard Pressure (psia) Standard Temperature (°F)	litions 14.65 60	
Gas & Fluid Prop	erties Separator Gas Specific Gravity Condensate Yield (bc/mmcf) GOR (sct/stb) Cond Gravity (°API) Cond Gravity (decimal) Wellstream Gas Specific Gravity	0.710 30 33,333 50 0.780 0.800	0.630 2 500,000 60 0.739 0.636	Comments GEF estimated for BOTH Z	DNES	
Non-Hydrocarbo Component	CO2 (%) N2 (%) H2S (%)	5.0% 2.0% 0.0%		What control	ols GEF?	
RESULI	Zi Bgi (rct/scf) GEF = 1/ Bgi (sct/rcf) [MMRA input]	1.279 0.00313 320	0.839 0.01256 80	Pressure is	King !!	

<u>Reservoir</u> Deep Gas (Reservoir BCF) 1.000 GEF (SCF/RCF) 320 Gas (Standard BCF) 320

What do you do when all your Markers off the line? Final Map is based on a Residual Map Correcting All the Errors

LEAST SQUARE

4 Algorithms to Generate Residual Map There are lots more algorithms available

Are you going to get a different final map?

Lookout for Tricks unfairly improving Prospect Ranking Real Examples of an Uneven Playing Field

- Preferential Selection of MCFS to rely on nonexistent infrastructure
- Arbitrary Selection of Area & Net Pay to reduce costs and increase production

Impact of MCFS & Development Planning on Exploration Prospect Evaluations can be significant and affect budget funding

Impact of Commercial Threshold on Prospect Ranking Normalizing MCFS Methodology is important for consistent decision making

Consistent Development Planning

Is the hard work over once the resource distribution is finalized and discrete cases are chosen for economic evaluation?

Consider the following two cases to develop a Prospect's NRV:

	CASE #	1			
. .					
Parameter	<u>Units</u>	<u>Case #1</u>	<u>Case #2</u>		
NRV	ac-ft	20,000	20,000		
					CASE
Area	acres	2,000	400		CASE
Net Pay	feet	10	50		#2
	_				
Drainage Area	acres/well	100	100		
Well IP	BOPD/ft	30	30		
Number of Wells	count	20	4	Is economic value	
Well IP	BOPD	300	1,500	the same for both?	

Benefits of Engineers on **Risk Team**

Benefits with an Engineer on Risk Team

- Hydrocarbon Recovery Yield Reality Checks
 - Recovery Efficiency, Porosity, Saturation and FVF
 - Consistently applied across all prospects
- Recovery Efficiencies appropriate for the Geological Model, Lateral Continuity, Fluid Properties, Development Plan, MCFS
- FVF for Oil & Gas, including GOR & CGR of secondary phases, reality checked for possibility of simultaneous occurrence
- Reality checking MCFS and Development Plan concept ensuring decision making based on consistent methodology
- Different Perspective adds values to overall evaluation

Further Discussion?

